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TESTING HYPOTHESES ABOUT STRUCTURE OF
PARAMETERS IN MODELS WITH BLOCK
COMPOUND SYMMETRIC COVARIANCE

STRUCTURE
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ABSTRACT

In this article we deal with testing the hypotheses of the so-called structured mean
vector and the structure of a covariance matrix. For testing the above mentioned
hypotheses Jordan algebra properties are used and tests based on best quadratic
unbiased estimators (BQUE) are constructed. For convenience coordinate-free ap-
proach (see Kruskal (1968) and Drygas (1970)) is used as a tool for characterization
of best unbiased estimators and testing hypotheses. To obtain the test for mean vec-
tor, linear function of mean vector with the standard inner product in null hypothesis
is changed into equivalent hypothesis about some quadratic function of mean pa-
rameters (it is shown that both hypotheses are equivalent and testable). In both
tests the idea of the positive and negative part of quadratic estimators is applied to
get the test, statistics which have F distribution under the null hypothesis. Finally,
power functions of the obtained tests are compared with other known tests like LRT
or Roy test. For some set for parameters in the model the presented tests have
greater power than the above mentioned tests. In the article we present new results
of coordinate-free approach and an overview of existing results for estimation and
testing hypotheses about BCS models.

Key words: coordinate-free approach, Jordan algebra, multivariate model, block
compound symmetric covariance structure, best unbiased estimators, testing struc-
ture of mean vector, testing independence of block variables.

1. Coordinate-free approach and Jordan algebra

1.1. Expectation and covariance operator in finite dimensional space with
inner product

Let K (⋅, ⋅) be a finite dimensional space with an inner product (aaa,bbb).

Definition 1. We say that the vector ��� ∈K is the expectation of a random vector
yyy ∈K if there exists ��� such that for all aaa ∈K the expectation

E(aaa,yyy) = (aaa,���) . (1)
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Lemma 1. Expectation ��� is uniquely defined and does not depend on the choice of
inner product.

Proof. Suppose that ���1 different from ���2 are two expectation vectors, then for all
aaa ∈K we have that E(aaa,yyy) =

(

���1,aaa
)

=
(

���2,aaa
)

. This is equivalent to
(

���1− ���2,aaa
)

= 0
for all aaa ∈K and this is equivalent to ���1 = ���2.
To prove the second part of this lemma let [⋅, ⋅] be an arbitrary inner product. Then,
from the characterization of all inner products it is implied there exists a self-adjoint
positive definite operator AAA = AAA∗ such that for all aaa,bbb ∈K we have

[

aaa,bbb
]

= (aaa,AAAbbb) =
(AAAaaa,bbb). From the definition of expectation we have that for all aaa ∈K

E[aaa,yyy] =
[

aaa,���[⋅,⋅]
]

. (2)

On the other hand, for all aaa ∈K

E[aaa,yyy] = E(aaa,AAAyyy) = E(AAAaaa,yyy) =
(

AAAaaa,���(⋅,⋅)
)

=
(

aaa,AAA���(⋅,⋅)
)

=
[

aaa,���(⋅,⋅)
]

. (3)

From (2) and (3) we have that ���[⋅,⋅] = ���(⋅,⋅).

Definition 2. Operator ΣΣΣ(⋅,⋅) is a covariance operator if for all aaa,bbb ∈K

cov((aaa,yyy) , (bbb,yyy)) =
(

aaa,ΣΣΣ(⋅,⋅)bbb
)

. (4)

The following lemma shows that the covariance operator depends on the choice
of inner product.

Lemma 2. Operator ΣΣΣ(⋅,⋅) is uniquely defined and depends on inner product (⋅, ⋅),
i.e. under [⋅, ⋅] = (⋅,AAA⋅) operator ΣΣΣ[⋅,⋅] = ΣΣΣ(⋅,⋅)AAA.

Proof. The proof of uniqueness of the covariance operator is similar to the proof of
uniqueness of expectation. To prove the second part of the lemma note that from
the definition we have

cov
(

[aaa,yyy] ,
[

bbb,yyy
])

=
[

aaa,ΣΣΣ[⋅,⋅]bbb
]

. (5)

On the other hand,

cov
(

[aaa,yyy] ,
[

bbb,yyy
])

= cov((AAAaaa,yyy) , (AAAbbb,yyy)) =
(

AAAaaa,ΣΣΣ(⋅,⋅)AAAbbb
)

=
(

aaa,AAAΣΣΣ(⋅,⋅)AAAbbb
)

(6)

=
[

aaa,ΣΣΣ(⋅,⋅)AAAbbb
]

(7)

From (5) and (7) it follows that ΣΣΣ[⋅,⋅] = ΣΣΣ(⋅,⋅)AAA.

Remark 1. Through the paper we deal with ℝn and the standard inner product. In
the space of m×n matrices, which is denoted by ℳm,n, the inner product is defined
as tr

(

AAABBB′
)

. The space of n×n symmetric matrices will be denoted by S n. Because
of symmetry the inner product in S n is tr (AAABBB). Moreover, throughout the paper AAA′

will stand for transpose of matrix AAA.
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1.2. Special linear operator on space of ℳm,n

Definition 3. Let AAA,BBB,CCC be matrices with such dimensions that multiplication AAACCCBBB
is possible. Then:

(AAA⊙BBB)CCC = AAACCCBBB.

In the following remark we will show the relation between the Kronecker product
of two matrices AAA and BBB (AAA⊗BBB), which have orders k× l and p× q, respectively,
and the special operator ⊙. In this paper, the Kronecker product is defined as block
matrix AAA⊗BBB = aijBBB for i = 1,… ,k and j = 1,… , l.

The operator vec is a linear transformation which converts a matrix into a column
vector by stacking the columns of the matrix under another. The inverse operator
to vec is vec−1p which converts a column vector into a matrix with p rows, such that
vec−1p (vec(XXX)) =XXX for all matricesXXX of order p×k and vec(vec−1p (xxx)) = xxx for all vectors
xxx with dimension pk×1.

Remark 2. Let YYY be a matrix order q× l. The operator ⊙ has a following properties:

• (AAA⊗BBB)vec(YYY ) = vec
(

(BBB⊙AAA′)YYY
)

;

• vec−1p ((AAA⊗BBB)vec(YYY )) = (BBB⊙AAA′)YYY ;

• (AAA⊙BBB)(CCC ⊙DDD) = AAACCC ⊙DDDBBB.

1.3. Jordan algebra and its properties

An associative algebra can be transformed into a Jordan algebra by the Jordan
product A◦B = AB+BA

2 (see Schafer (1966)). Through the paper we deal with Jordan
algebras of matrices „formally real” in the sense that if AAA2 +BBB2 +… = 000 then AAA =
BBB =…= 000 (see Jordan, Neumann and Wigner (1934)).

A full characterization of irreducible Jordan algebras of matrices is given by
Jordan, Neumann and Wigner (1934) (for more details see also Massam (1994),
Massam and Neher (1997), Letac and Massam (1998), Massam and Neher (1998),
Faraut and Korányi (1994)):

• The algebra S n of all n×n (n ≥ 1) symmetric matrices with trace inner product
and operation A◦B;

• The algebra ℒ n (Lorentz spin algebra);

• The algebraℋn of all n×n complex Hermitian matrices with trace inner product
and operation A◦B;

• The algebra Qn of all n × n quaternion Hermitian matrices with trace inner
product operation A◦B;

• The algebra O3 of all 3×3 octonion Hermitian matrices with trace inner product
and operation A◦B.
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Remark 3. Note that all Jordan algebras can be represented as Cartesian prod-
uct of all above Jordan algebras. For statistics, the most important are Cartesian
product of ℝ (as a special case of the first one with n = 1, where multiplication is
commutative (ab = ba)) and S n (for n ≥ 2). They were named as quadratic sub-
spaces by Seely (1971). If matrices in Jordan algebra commute, i.e. AAABBB = BBBAAA,
then this algebra is isomorphic to Cartesian product of ℝ.

Some of properties which we will use through the paper are given in the lemma
below.

Lemma 3. Let ### be a quadratic subspace of S n. Then:

1. AAA ∈ ###⇒ AAAk ∈ ###;

2. AAA,BBB ∈ ###⇒ AAABBBAAA ∈ ###;

3. AAA,BBB,CCC ∈ ###⇒ AAABBBCCC +CCCBBBAAA ∈ ###;

4. PPP 2 = PPP , PPP = PPP ′ and ∀VVV ∈ ### PPPVVV = VVV PPP ⇒MMM###MMM ′′′ =MMM### is a quadratic sub-
space, where matrix MMM = III −PPP , while III stands for identity matrix;

5. If QQQ is an orthogonal matrix then QQQ###QQQ′′′ is also a quadratic subspace.

For the proof see Seely (1971) and also Zmyślony (1979).

2. Estimation and testing hypotheses in mixed models for uni-
variate case

In this section we deal with estimation and testing hypotheses using coordinate-free
approach and properties of Jordan algebra.

2.1. Estimation of parameters in mixed models

The well-known normal mixed model can be expressed as follows

yyy ∼ (XXX���,VVV (���)) , (8)

where ��� =
(

�21 ,… ,�2m
)′ and VVV (���) =

∑m
i=1 �

2
i VVV i. We shall note that K = ℝn with the

standard inner product,X ={XXX��� ∶ ��� ∈ℝp} and ###= sp
{
∑m
i=1�

2
i VVV i ∶ �i ≥ 0,VVV i are known

}

.

Remark 4. We assume that there exists ���0 such that VVV
(

���0
)

= III .

Let ��� = {���,���} and g (���) be a real-valued function. We consider the following
classes of linear and quadratic estimators, respectively
A = {(aaa,yyy) ∶ aaa ∈ℝn,E(aaa,yyy) = g (���)},
ℬ =

{

⟨BBB,yyyyyy′⟩ ∶ BBB ∈ S n,E⟨BBB,yyyyyy′⟩ = g (���)
}

.
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Remark 5. In the class ℬ with K = S n and the inner product ⟨AAA,BBB⟩ = tr (AAABBB) we
get that the expectation of yyyyyy′ is:

E
(

yyyyyy′
)

= VVV (���)+XXX������′XXX = VVV (���)+E(yyy)E(yyy)′

and covariance of yyyyyy′ is:

cov
(

yyyyyy′
)

= 2
[

E
(

yyyyyy′
)

⊗E
(

yyyyyy′
)

−E(yyy)E(yyy)′⊗E(yyy)E(yyy)′
]

.

We recall the definition of estimable function of parameters ��� and ���.

Definition 4. A function
[

ccc,���
]

is said to be estimable if there exists a linear unbiased
estimator for this function i.e. E(aaa,yyy) =

[

ccc,���
]

.

In the following two theorems conditions for the existence of estimators with
optimal properties in a mixed linear model are given.

Theorem 1. For any estimable function
[

ccc,���
]

there exists its best linear unbiased
estimator if and only if for i = 1,… ,m holds PPPVVV i = VVV iPPP , where PPP =XXXXXX+, while XXX+

is Moore-Penrose inverse of matrix XXX.

Theorem 2. For any estimable function [ccc,���] there exists its best quadratic unbi-
ased estimator if and only if MMM###MMM is quadratic subspace, where MMM = III −XXXXXX+.

Theorem 3. For any quadratic estimable function there exists best quadratic un-
biased estimators (BQUE) if and only if sp

{

XXX������′XXX,VVV 1,… ,VVV m
}

is quadratic sub-
space.

For proofs of these theorems see Zmyślony (1978, 1980). From Seely (1972,
1977) and Zmyślony (1980), and since the estimators are functions of complete
sufficient statistics, the following remarks follows.

Remark 6. Best linear unbiased estimators and best quadratic unbiased estimators
are best unbiased estimators.

Suppose that
yyy
n×1

∼ (�111,VVV (���)) ,

where � ∈ℝ and VVV (���) = �21VVV 1+�
2
2VVV 2+�

2
3VVV 3, while

VVV 1 =
⎡

⎢

⎢

⎣

111111′′′
n1×n1

000

000 000
n2×n2

⎤

⎥

⎥

⎦

,VVV 2 =
⎡

⎢

⎢

⎣

000
n1×n1

000

000 111111′′′
n2×n2

⎤

⎥

⎥

⎦

,VVV 3 =
⎡

⎢

⎢

⎣

III
n1×n1

000

000 III
n2×n2

⎤

⎥

⎥

⎦

.

Since the expectation of yyyyyy′ is

E
(

yyyyyy′
)

= �2111111′′′+VVV (���) = �2111111′′′+�21VVV 1+�
2
2VVV 2+�

2
3VVV 3,

three following conditions for this model are satisfied:
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1. ### = sp
{

111111′′′,VVV 1,VVV 2,VVV 3
}

is a quadratic subspace,

2. 1
n111111

′′′ does not commute with VVV 1 and VVV 2,

3. according to first characterization of Jordan algebra it means that ### can be
represented as Cartesian product of 2×2 symmetric matrices and �23III .

Remark 7. According to Theorem 1 note that PPP = 1
n111111

′′′ does not commute with
VVV (���) and thus the BLUE of � does not exist. However, from Theorem 3, there
exists the BQUE for �2.

2.2. Tests for variance components based on unbiased estimators

For the normal model of the form given in (8) we consider the following hypotheses

H0 ∶ �2i = 0 vs H1 ∶ �2i > 0.

Let yyy′AAAyyy be an unbiased estimator of �2i . Moreover, let AAA+, AAA− stand for positive
and negative part of matrix AAA, respectively.

Remark 8. For i < k the estimator yyy′AAAyyy is ”not defined”, that is AAA =AAA+−AAA−, where
AAA+,AAA− ≥ 0, i.e. AAA+,AAA− are nonnegative definite matrices different than 000. Note that

• if H0 is true, then E
(

yyy′AAA+yyy
)

= E
(

yyy′AAA−yyy
)

,

• if H1 is true, then E
(

yyy′AAA+yyy
)

> E
(

yyy′AAA−yyy
)

.

Corollary 1. The test should reject hypothesis

H0 ∶ �2i = 0

if statistic

F =
yyy′AAA+yyy
yyy′AAA−yyy

is sufficiently large.

Let us consider three conditions for commutative Jordan algebra, i.e. for all
elements AAA and BBB of such algebra AAABBB = BBBAAA:

1. sp
{

MMMVVV 1MMM,… ,MMMVVV kMMM
}

is a commutative Jordan algebra,

2. sp
{{

MMMVVV 1MMM,… ,MMMVVV kMMM
}

∖
{

MMMVVV iMMM
}}

is a commutative Jordan algebra,

3. F = yyy′AAA+yyy
yyy′AAA−yyy

has F-Snedecor distribution under H0 ∶ �2i = 0.

Theorem 4. The first and second from the above conditions imply the third condi-
tion.

For proof see Michalski and Zmyślony (1996).
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Theorem 5. The first and third from the above conditions imply the second condi-
tion.

Theorem 6. Let us assume that a subspace

sp
{

MMMVVV 1MMM,… ,MMMVVV kMMM
}

is a commutative Jordan algebra, while

sp
{{

MMMVVV 1MMM,… ,MMMVVV kMMM
}

∖
{

MMMVVV iMMM
}}

is not a commutative Jordan algebra. Then, statistic

F =
yyy′AAA+yyy
yyy′AAA−yyy

has a generalized F-Snedecor distribution under H0 ∶ �2i = 0, where yyy′AAAyyy is BQUE
of parameter �2i (see Fonseca et al. (2002)).

3. Block compound symmetric covariance structure in doubly
multivariate data

3.1. Covariance structure

The (mu×mu)−dimensional BCS covariance structure for m-variate observations
over u factor levels is defined as:

ΓΓΓ =

⎡

⎢

⎢

⎢

⎢

⎣

ΓΓΓ0 ΓΓΓ1 … ΓΓΓ1
⋮ ⋱ ⋮
⋮ ⋱ ⋮
ΓΓΓ1 ΓΓΓ1 … ΓΓΓ0

⎤

⎥

⎥

⎥

⎥

⎦

=
(

ΓΓΓ0−ΓΓΓ1
)

⊙IIIu+ΓΓΓ1⊙JJJ u
= ΓΓΓ0⊙IIIu+ΓΓΓ1⊙

(

JJJ u−IIIu
)

with JJJ u = 111u111
′

u. The above BCS structure can be also written as a sum of two
orthogonal matrices (i.e. the product of orthogonal matrices is equal to matrix 000):

ΓΓΓ = (ΓΓΓ0−ΓΓΓ1)⊙
(

IIIu−
1
u
JJJ u

)

+
(

ΓΓΓ0+(u−1)ΓΓΓ1
)

⊙ 1
u
JJJ u.

The following assumptions for matrices ΓΓΓ0 and ΓΓΓ1 in BCS structure

1. ΓΓΓ0 is a positive definite symmetric m×m matrix,

2. ΓΓΓ1 is a symmetric m×m matrix,

3. ΓΓΓ0+(u−1)ΓΓΓ1 is a positive definite matrix,
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4. ΓΓΓ0−ΓΓΓ1 is a positive definite matrix.

imply that the um× um matrix ΓΓΓ is positive definite (for the proof see Lemma 2.1 in
Roy and Leiva (2011)). This result follows also from the property of rank for strong
orthogonality of matrices.

3.2. Normal model with BCS covariance structure

The normal BCS model can be written in the following way:

YYY
um×n

=
[

yyy1,yyy2,… ,yyyn
]

∼
(

(IIIum⊙111
′
n)���,ΓΓΓ⊙IIIn

)

(9)

with ΓΓΓ defined in 3.1. In this model we assume that the mean vector changes over
sites or over time points so ��� has um components. Matrix YYY contains n independent
normally distributed random column vectors, which are identically distributed with
the mean vector ��� and the covariance matrix ΓΓΓ.
Let us consider orthogonal transformation IIIum⊙QQQ on YYY um×n, where QQQ is an orthog-
onal matrix of order n.

Proposition 1. If cov(YYY ) = ΣΣΣYYY =ΣΣΣ⊙III with any covariance matrix ΣΣΣ then covariance
is invariant with respect to transformation III ⊙QQQ on YYY .

In the next proposition we show that orthogonal transformation saves commu-
tativity of projectors with covariance matrices as well as the property of quadratic
subspace.

Proposition 2. Let ###ΣΣΣYYY be the space generated by covariance matrices ΣΣΣ and let
PPPE(YYY ) denote orthogonal projector onto the subspace of mean matrix of a random
matrix YYY . Moreover, let UUU = QQQ (YYY ), where QQQ is an arbitrary orthogonal operator.
Then:

(i) If PPPE(YYY )ΣΣΣYYY = ΣΣΣYYY PPPE(YYY ) then PPPE(UUU )ΣΣΣUUU = ΣΣΣUUUPPPE(UUU ). (10)

(ii) If ###ΣΣΣYYY is a quadratic subspace then ###ΣΣΣUUU is a quadratic subspace. (11)

For the special case of QQQ =QQQ1⊙QQQ2 we get the following:

Lemma 4. Since the space ###cov(YYY ) generated by covariance matrices ΓΓΓ⊙III is a
quadratic subspace and orthogonal projector PPPE(YYY ) = IIIum ⊙

1
nJJJ n commutes with

covariance matrices, we have:

PPPE(UUU ) commutes with cov(UUU ) and ###cov(UUU ) is a quadratic subspace.

For the proof that for the model (9) ###cov(YYY ) is a quadratic subspace and assump-
tion that commutativity of PPPE(YYY ) holds see Roy et al. (2016).

3.3. Testing hypotheses about structure of expectation

In this section we consider testing hypotheses about the parameters of the mean
vector. These results can be also found in Zmyślony et al. (2018). For this reason
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we use the two following orthogonal transformations:

1. UUU =
[

uuu1,… , uuun
]

= (IIIum⊙QQQ2)YYY , where QQQ2 =
[

1
√

n
111n ⋮KKK111n

]

is Helmert matrix,

such that KKK ′
111n
KKK111n = IIIn−1 and KKK ′

111n
111n = 000,

2. WWW i = (III ⊙QQQ1)UUU i, where UUU i = vec−1
(

uuui
)

is a matrix of size m× u and QQQ1 =
[

1
√

u
111u ⋮KKK111u

]

which are useful for constructing the test statistic.
Now, we formulate the null hypothesis for structure of mean

H0 ∶ ���1 = ���2 =…= ���u.

This hypothesis can be written equivalently as

H0 ∶ ���
(c)
2 = ���(c)3 =…= ���(c)u = 0,

where ���(c)j =
√

nu
∑u
l=1kkkl,j−1���l, while kkkl,j−1 is l, j−1-th element of KKK111u .

Following the idea of Michalski and Zmyślony (1999) this hypothesis is equivalent
to

H0 ∶
u
∑

j=2
���(c)j ���

(c)′
j = 0.

One can prove that quadratic estimator of
∑u
j=2���

(c)
j ���

(c)′
j is a function of complete

sufficient statistics (see Roy et al. (2016)) and has the following form:

̂u
∑

j=2
���(c)j ���

(c)′
j =

u
∑

j=2
�̂��(c)j �̂��

(c)′
j −(u−1)Γ̂ΓΓ0−Γ̂ΓΓ1, (12)

where Γ̂ΓΓ0 and Γ̂ΓΓ1 are best unbiased estimators (BUE) for ΓΓΓ0 and ΓΓΓ1, respectively.
For details see Roy et al. (2016).
Note that

u
∑

j=2
�̂��(c)j �̂��

(c)′
j

df
= (u−1)Δ̂ΔΔ2

is the positive part and

(u−1)Γ̂ΓΓ0−Γ̂ΓΓ1
df
= (u−1)Δ̂ΔΔ1

is the negative part of estimator in (12).

Under the null hypothesis the positive part has Wishart distribution and the neg-
ative part multiplied by (n−1) is Wishart distributed with the same covariance matrix
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ΓΓΓ0−ΓΓΓ1

(n−1)(u−1)Δ̂ΔΔ1 ∼m
(

ΓΓΓ0−ΓΓΓ1, (n−1)(u−1)
)

,

(u−1)Δ̂ΔΔ2 ∼m
(

ΓΓΓ0−ΓΓΓ1, u−1
)

,

where Δ̂ΔΔ1 and Δ̂ΔΔ2 are independent.

Lemma 5. If WWW 1 ∼m(ΣΣΣ,n1) and WWW 2 ∼m(ΣΣΣ,n2) are independent, then for every
fixed vector xxx ≠ 0 ∈ℝm:

F =
n2xxx′WWW 1xxx
n1xxx′WWW 2xxx

∼ Fn1,n2 .

Now, we give the theorem from Zmyślony et al. (2018).

Theorem 7. Under the null hypothesis, the statistic

F =
xxx′
∑u
j=2 �̂��

(c)
j �̂��

(c)′
j xxx

(u−1)xxx′
(

Γ̂ΓΓ0−Γ̂ΓΓ1
)

xxx
=
xxx′Δ̂ΔΔ2xxx

xxx′Δ̂ΔΔ1xxx
(13)

has F distribution with (u−1) and (n−1)(u−1) degrees of freedom for any fixed xxx.

3.4. Testing hypotheses about ΓΓΓ1

In this section we consider the following hypotheses about parameters in matrix ΓΓΓ1
under assumption that all elements of ΓΓΓ1 are nonnegative or nonpositive:

H0 ∶ ΓΓΓ1 = 000 vs. H1 ∶ ΓΓΓ1 ≠ 000.

The presented results can be also found in Fonseca et al. (2018). From Roy et al.
(2015) we get that matrices:

(n−1)(u−1)Δ̂ΔΔ1 = (n−1)(u−1)(Γ̂ΓΓ0−Γ̂ΓΓ1) ∼m(ΓΓΓ0−ΓΓΓ1, (n−1)(u−1)),

(n−1)Δ̂ΔΔ2 = (n−1)(Γ̂ΓΓ0+(u−1)Γ̂ΓΓ1) ∼m(ΓΓΓ0+(u−1)ΓΓΓ1, (n−1))

are independent. It is easy to show that:

Γ̂ΓΓ1 =
Δ̂ΔΔ2−Δ̂ΔΔ1

u
.

Under the framework given in Michalski and Zmyślony (1996) a positive part of Γ̂ΓΓ1
is given by:

Γ̂ΓΓ1+ =
Δ̂ΔΔ2
u

and a negative part is given by:

Γ̂ΓΓ1− =
Δ̂ΔΔ1
u
.
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Note that estimator of ΓΓΓ1 is given by:

Γ̂ΓΓ1 = Γ̂ΓΓ1+−Γ̂ΓΓ1− =
Δ̂ΔΔ2−Δ̂ΔΔ1

u
.

For the proof of the following theorem see Fonseca et al. (2018).

Theorem 8. Under the hypothesis H0 ∶ ΓΓΓ1 = 0 the test statistic:

F =
111′Γ̂ΓΓ1+111

111′Γ̂ΓΓ1−111
(14)

has F distribution with (n−1) and (n−1)(u−1) degrees of freedom.

3.5. Testing hypotheses about single parameters

H0 ∶ �
(1)
ij = 0 vs. H1 ∶ �

(1)
ij ≠ 0

In order to conduct F test for testing hypotheses about single parameter, i.e. H0 ∶
�(1)ii = 0 for given i = 1,… ,m, vectors 111 in (14) should be replaced by

eeei = (0,… ,0, 1
⏟⏟⏟

i th position

,0,… ,0)′.

If �(1)ii and �(1)jj are equal to zeros then for parameters �(1)ij , i < j, i= 1,… ,m, instead
of vectors 111 in (14) one should insert

eeei− eeej = (0,… ,0, 1
⏟⏟⏟

i th position

,0,… , −1
⏟⏟⏟

j th position

,0,… ,0)′.

Remark 9. Testing single contrast of parameters can be done in a similar way using
vector ei defined above instead of 111u.

4. Data application

In this section we use a data set from Johnson and Wichern (2007) for estimation
parameters and testing hypotheses, presented in previous section, about the struc-
ture of expectation and covariance parameters in model (9). These data contain
measures of mineral content of three bones for 25 women: radius, humerus and
ulna. Each measurement was recorded on the dominant and non-dominant side.

Using the formula (4.13) and Theorem 1 from Roy et al. (2016) we get that
BLUE for ��� is

�̂�� =
[

0.84380 1.79268 0.70440 0.81832 1.73484 0.69384
]

,
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where, in accordance with the order of variables, the first three values are the
means for measurements of mineral content in dominant side of radius, humerus
and ulna, respectively, while the last three values are the means for measurements
of mineral content in non-dominant side for these bones.
From the same paper, using formulas (3.4) and (3.5) and Theorem 1 we get that
BQUE for ΓΓΓ0 and ΓΓΓ1 are

Γ̂ΓΓ0 =
⎡

⎢

⎢

⎣

0.01221 0.02172 0.00901
0.02172 0.07492 0.01682
0.00901 0.01682 0.01108

⎤

⎥

⎥

⎦

and Γ̂ΓΓ1 =
⎡

⎢

⎢

⎣

0.01038 0.01931 0.00824
0.01931 0.06678 0.01529
0.00824 0.01529 0.00807

⎤

⎥

⎥

⎦

,

respectively.
For testing hypotheses about the structure of expectation in test statistic (13)

we take the vector xxx = 111m, so we consider the sum of elements of the positive and

negative part of the estimator ̂∑u
j=2���

(c)
j ���

(c)′
j . Our test was compared with two well-

known tests: likelihood ratio test (LRT) and Roy’s test. Formulas of these tests
statistics were given in Zmyślony et al. (2018) in Section 4. Calculated p-values for
considered data example for all three tests are given in the table below.

Table 1: P-values in testing hypotheses about the structure of expectation and ele-
ments of ΓΓΓ1 with the use of three different tests

Name of test Test for ��� Test for ΓΓΓ1
F test 0.0363 1.06073 ⋅10−9
LRT 0.1725 1.807443 ⋅10−13

Roy’s test 0.1725

The same p-values for LRT and Roy’s test in Table 1 follow from the fact that in
case u = 2 both tests are equivalent. On the standard 5% level of significance we
conclude on the p-value for F test that means are significantly different between two
sides. For more details about the comparison of these three tests see Zmyślony et
al. (2018).

Test F for testing hypotheses about elements of ΓΓΓ1, whose statistic was given in
(14), was compared with LRT, whose statistic was given in formula (3.3) in Fonseca
et al. (2018). For both tests, on 5% level of significance, we can conclude that at
least one element of ΓΓΓ1 is different than 0.

5. Conclusion

This paper contains a review of results concerning estimation and testing hypothe-
ses for univariate and multivariate linear models. The presented results are based
on the properties of Jordan algebra. Moreover, the coordinate-free approach sim-
plifies inference in linear models for both the univariate and multivariate case. It was
presented how the methods of estimation and testing for a univariate model can be
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extended to the multivariate case. Estimators of the parameters of the presented
BCS covariance structure model and the data presenting measures of mineral con-
tent of bones can be found in Roy et al. (2016). The power of the proposed tests
for expectation and covariance parameters, in the multivariate case, is compared
with well-known tests such as LRT and Roy’s test in Fonseca et al. (2018) and
Zmyślony et al. (2018). As a result of the simulation study we can say that in some
cases (for some alternatives) the tests proposed in this paper have greater power
than LRT and Roy’s test. The same data example, as for the estimation purpose,
was used for testing hypotheses for covariance structure in Fonseca et al. (2018)
and for testing hypotheses about the mean structure in Zmyślony et al. (2018).
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ZMYŚLONY, R. (1980). Completeness for a family of normal distributions, Mathe-
matical Statistics, Banach Center Publications, 6, pp. 355–357.
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